博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1280 字,大约阅读时间需要 4 分钟。

在tensorflow中有着独特的变量共享机制,不需要传递reference就可以在不同的代码块中共享变量。而这种变量共享机制就是通过variable_scope和name_scope来实现的。

tf.get_variable

这个函数的作用是创建一个新的变量或者在已经创建的变量中检索一个变量。这个函数和tf.Variable有很大区别,后一个每次都会创建一个新的变量(而且如果创建时传入的名字已经存在,会在tensor的name中默认增加后缀进行区分)
在这里插入图片描述

两种scope在创建op和使用tf.Variable创建变量时有着相同的影响(都会在name前加上scope的前缀),但是当使用tf.get_variable时,name_scope将会被忽略。

import tensorflow as tfwith tf.name_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0

如果想要一个tf.get_variable创建的变量可以被其他代码块访问,需要使用variable scope:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test_scope/test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0
import tensorflow as tfwith tf.variable_scope('share'):    share=tf.get_variable('share_variable',[1])with tf.variable_scope('share',reuse=True):    share_test=tf.get_variable('share_variable',[1])    print(share.name)        #share/share_variable:0print(share_test.name)   #share/share_variable:0

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
Nagios自定义监控脚本
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
nanoGPT 教程:从零开始训练语言模型
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
NAS服务器有哪些优势
查看>>
NAT PAT故障排除实战指南:从原理到技巧的深度探索
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>